Tutorial 5

Transforming maximin problem to dual problem

We solve the above maximin problem in the following two steps.

1. Transform the maximin problem to a dual problem.

2. Use simplex method to solve the dual problem.

Step 1. Add a constant k to each entry of A so that every entry of A is positive.

Step 2. Let
$$x_i = \frac{p_i}{v}$$
, for $i = 1, 2, \cdots, m$.

Step 3. Solve the dual problem

min
$$g(\mathbf{x}) = \mathbf{x} \mathbf{1}^T$$

subject to $\mathbf{x} A \ge 1$

Step 4. Suppose $\mathbf{x} = (x_1, x_2, ..., x_m)$ is an optimal vector of the dual problem and

$$d = g(\mathbf{x}) = x_1 + x_2 + \dots + x_m$$

is the minimum value. Then,

$$\mathbf{p} = \frac{\mathbf{x}}{d}$$

is a maximin strategy for the row player and the value of the game matrix A is

$$v = \frac{1}{d} - k.$$

Simplex method

Simplex method is a method to solve the linear programming problems.

Given an $m \times n$ matrix A, two vectors $\boldsymbol{b} \in \mathcal{P}^m$, $\boldsymbol{c} \in \mathcal{P}^n$ and a number d,

we consider *primal problem*

$$\begin{array}{ll} \max \quad f(\boldsymbol{y}) = \boldsymbol{c}\boldsymbol{y}^T + d \\ \text{subject to} \quad A\boldsymbol{y}^T \leq \boldsymbol{b}^T \end{array}$$

and the *dual problem*

min
$$g(\boldsymbol{x}) = \boldsymbol{x}\boldsymbol{b}^T + d$$

subject to $\boldsymbol{x}A \ge \boldsymbol{c}$.

The key step of the simplex method is called the **pivoting operation**. Assume the tableau of the linear programming problem is given by

Step 1. Find a position to start the pivoting operation.

If $c_j \leq 0$ for all j, then go to step 3. Otherwise, choose $j \in \{1, 2, \dots, n\}$ such that $c_j > 0$.

If $a_{ij} \leq 0$ for all $1 \leq i \leq m$, the primal problem has no solution. Otherwise, pick $k \in \{1, 2, \dots, m\}$ such that

$$\frac{b_k}{a_{kj}} = \min\{\frac{b_i}{a_{ij}} : a_{ij} > 0, i = 1, \cdots, m\}.$$

Step 2. Make pivoting operation as follows.

	y_k	y_l		x_i	y_l	
x_i	a*	b	 y_k	$\frac{1}{a}$	$\frac{b}{a}$	
x_j	с	d	 x_j	$-\frac{c}{a}$	$\frac{ad-bc}{a}$	

Step 3. Continue Step 1 and Step 2 until $c_j \leq 0$ for all j. If the final result after pivoting operations is

then we can conclude that the optimal value of the primal problem is v and

$$x_{i} = -g \quad y_{i+n} = 0$$
$$y_{l} = 0 \quad x_{l+m} = -h$$
$$y_{j} = e \quad x_{j+n} = 0$$
$$x_{k} = 0 \quad y_{k+m} = f.$$

Exercise 1. Use the simplex method to solve the two-person zero-sum game with game matrix

$$\begin{pmatrix} -1 & 1 & 3 \\ 1 & -3 & 2 \\ 3 & 0 & -1 \end{pmatrix}.$$

Solution. Step 1. Add 3 to each entry, we get

$$\begin{pmatrix} 2 & 4 & 6 \\ 4 & 0 & 5 \\ 6 & 3 & 2 \end{pmatrix}.$$

Step 2. Set up the tableau as

	y_1	y_2	y_3	-1
x_1	2	4	6	1
x_2	4	0	5	1 .
x_3	6	3	2	1
-1	1	1	1	0

Step 3. Apply pivoting operations, we have

	y_1	y_2	y_3	— .	1		$ x_3 $	y_2	y_3	-1	
x_1	2	4	6	1		x_1	$-\frac{1}{3}$	3*	$\frac{16}{3}$	$\frac{2}{3}$	-
x_2	4	0	5	1	\rightarrow	x_2	$-\frac{2}{3}$	-2	$\frac{11}{3}$	$\frac{1}{3}$	\rightarrow
x_3	6 *	3	2	1		y_1	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$	_
-1	1	1	1	0		-1	$-\frac{1}{6}$	$\frac{1}{2}$	$\frac{2}{3}$	$-\frac{1}{6}$	
				1							
					x_3	x_1	y_3	-1			
			y	2	$-\frac{1}{9}$	$\frac{1}{3}$	$\frac{16}{9}$	$\frac{2}{9}$			
			$\rightarrow x$	2	$-\frac{8}{9}$	$\frac{2}{3}$	$\frac{115}{27}$	$\frac{11}{27}$	•		
			y	1	$\frac{2}{9}$	$-\frac{1}{6}$	$-\frac{5}{9}$	$\frac{1}{18}$	_		
			_	1	$-\frac{1}{9}$	$-\frac{1}{6}$	$-\frac{2}{9}$	$-\frac{5}{18}$			

Let $d = \frac{5}{18}$. Then the value of the game is $v = \frac{1}{d} - 3 = \frac{3}{5}$. Since the basic

solution is

$$x_{3} = \frac{1}{9} \qquad y_{6} = 0$$

$$x_{1} = \frac{1}{6} \qquad y_{4} = 0$$

$$y_{3} = 0 \qquad x_{6} = \frac{2}{9}$$

$$y_{2} = \frac{2}{9} \qquad x_{5} = 0$$

$$x_{2} = 0 \qquad y_{5} = \frac{11}{27}$$

$$y_{1} = \frac{1}{18} \qquad x_{4} = 0$$

We have the maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3) = \frac{18}{5}(\frac{1}{6}, 0, \frac{1}{9}) = (\frac{3}{5}, 0, \frac{2}{5}),$$

and the minimax strategy for the column player is

$$\boldsymbol{q} = \frac{1}{d}(y_1, y_2, y_3) = \frac{18}{5}(\frac{1}{18}, \frac{2}{9}, 0) = (\frac{1}{5}, \frac{4}{5}, 0).$$

Exercise 2. Let A be an $m \times n$ matrix. Let

$$C = \operatorname{conv}(\{a_1, \cdots, a_n, e_1, \cdots, e_m\})$$

be the convex hull of set $\{a_1, \dots, a_n, e_1, \dots, e_m\}$, where a_1^T, \dots, a_n^T are the column vectors of A and e_1, \dots, e_m are the vectors in the standard basis of \mathbb{R}^m . Prove if C contains a point $(c, \dots, c) \in \mathbb{R}^m$ with $c \leq 0$, then the value of A, $v(A) \leq c$.