Tutorial 5

Transforming maximin problem to dual problem

We solve the above maximin problem in the following two steps.

1. Transform the maximin problem to a dual problem.

2. Use simplex method to solve the dual problem.

Step 1. Add a constant k to each entry of A so that every entry of A is positive.

Step 2. Let
$$
x_i = \frac{p_i}{v}
$$
, for $i = 1, 2, \dots, m$.

Step 3. Solve the dual problem

$$
\min \quad g(\mathbf{x}) = \mathbf{x} \mathbf{1}^T
$$
\n
$$
\text{subject to} \quad \mathbf{x}A \ge 1
$$

Step 4. Suppose $\mathbf{x} = (x_1, x_2, ..., x_m)$ is an optimal vector of the dual problem and

$$
d = g(\mathbf{x}) = x_1 + x_2 + \dots + x_m
$$

is the minimum value. Then,

$$
\mathbf{p} = \frac{\mathbf{x}}{d}
$$

is a maximin strategy for the row player and the value of the game matrix A is

$$
v = \frac{1}{d} - k.
$$

Simplex method

Simplex method is a method to solve the linear programming problems.

Given an $m \times n$ matrix A, two vectors $\mathbf{b} \in \mathcal{P}^m$, $\mathbf{c} \in \mathcal{P}^n$ and a number d,

we consider primal problem

$$
\max \quad f(\mathbf{y}) = c\mathbf{y}^T + d
$$
\n
$$
\text{subject to } A\mathbf{y}^T \le \mathbf{b}^T
$$

and the dual problem

$$
\min \quad g(\boldsymbol{x}) = \boldsymbol{x}\boldsymbol{b}^T + d
$$
\n
$$
\text{subject to } \boldsymbol{x}A \geq \boldsymbol{c}.
$$

The key step of the simplex method is called the pivoting operation. Assume the tableau of the linear programming problem is given by

y_1	\cdots	y_n	-1	
x_1	a_{11}	\cdots	a_{1n}	b_1
\vdots	\vdots	\vdots	\vdots	
x_m	a_{m1}	\cdots	a_{mn}	b_m
-1	c_1	\cdots	c_n	$-d$

Step 1. Find a position to start the pivoting operation.

If $c_j \leq 0$ for all j, then go to step 3. Otherwise, choose $j \in \{1, 2, \cdots, n\}$ such that $c_j > 0$.

If $a_{ij} \leq 0$ for all $1 \leq i \leq m$, the primal problem has no solution. Otherwise, pick $k \in \{1, 2, \cdots, m\}$ such that

$$
\frac{b_k}{a_{kj}} = \min\{\frac{b_i}{a_{ij}} : a_{ij} > 0, i = 1, \cdots, m\}.
$$

Step 2. Make pivoting operation as follows.

y_k y_l			x_i	y_l	
$x_i\mid a^*$		y_k	$\frac{1}{a}$	$rac{b}{a}$	
$x_j \mid c \mid d$		x_i	\overline{c} \overline{a}	$ad-bc$ \overline{a}	

Step 3. Continue Step 1 and Step 2 until $c_j \leq 0$ for all j. If the final result after pivoting operations is

then we can conclude that the optimal value of the primal problem is v and

$$
x_i = -g \quad y_{i+n} = 0
$$

$$
y_l = 0 \quad x_{l+m} = -h
$$

$$
y_j = e \quad x_{j+n} = 0
$$

$$
x_k = 0 \quad y_{k+m} = f.
$$

Exercise 1. Use the simplex method to solve the two-person zero-sum game with game matrix

$$
\begin{pmatrix} -1 & 1 & 3 \ 1 & -3 & 2 \ 3 & 0 & -1 \end{pmatrix}.
$$

Solution. Step 1. Add 3 to each entry, we get

$$
\begin{pmatrix} 2 & 4 & 6 \ 4 & 0 & 5 \ 6 & 3 & 2 \end{pmatrix}.
$$

Step 2. Set up the tableau as

	y_1	y_2	y_3	
x_1	2		6	
x_2		0	5	
x_3	6	3	$\dot{2}$	

Step 3. Apply pivoting operations, we have

	$y_1\,$	$y_2\,$	y_3		$\overline{1}$		x_3	\mathcal{Y}_2	y_3	$\mathbf{1}$	
\overline{x}_1	$\overline{2}$	$\overline{4}$	$\boldsymbol{6}$	$\mathbf{1}$		x_1	$\frac{1}{3}$	3^*	$\frac{16}{3}$	$\frac{2}{3}$	
x_2	$\overline{4}$	$\overline{0}$	$\bf 5$	$\mathbf{1}$		x_2	$\frac{2}{3}$	-2	$\frac{11}{3}$	$\frac{1}{3}$	
\bar{x}_3	$6*$	3	$\overline{2}$	$\mathbf{1}$		y_1	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$	
-1	$\mathbf{1}$	$\,1$	$\mathbf{1}$	$\boldsymbol{0}$		-1	$-\frac{1}{6}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{6}$	
					\mathcal{X}_3	\boldsymbol{x}_1	$y_3\,$				
			y_2		$\frac{1}{9}$	$\frac{1}{3}$	$\frac{16}{9}$	$\frac{2}{9}$			
				x_2	$\frac{8}{9}$	$\frac{2}{3}$	$\frac{115}{27}$	$\frac{11}{27}$			
			\mathfrak{y}_1		$\frac{2}{9}$	$\frac{1}{6}$	$\frac{5}{9}$	$\frac{1}{18}$			
				$\mathbf{1}$		$\frac{1}{6}$	$\frac{2}{9}$	$\frac{5}{18}$			

Let $d = \frac{5}{18}$. Then the value of the game is $v = \frac{1}{d} - 3 = \frac{3}{5}$. Since the basic

solution is

$$
x_3 = \frac{1}{9} \qquad y_6 = 0
$$

\n
$$
x_1 = \frac{1}{6} \qquad y_4 = 0
$$

\n
$$
y_3 = 0 \qquad x_6 = \frac{2}{9}
$$

\n
$$
y_2 = \frac{2}{9} \qquad x_5 = 0
$$

\n
$$
x_2 = 0 \qquad y_5 = \frac{11}{27}
$$

\n
$$
y_1 = \frac{1}{18} \qquad x_4 = 0
$$

We have the maximin strategy for the row player is

$$
\boldsymbol{p} = \frac{1}{d}(x_1, x_2, x_3) = \frac{18}{5}(\frac{1}{6}, 0, \frac{1}{9}) = (\frac{3}{5}, 0, \frac{2}{5}),
$$

and the minimax strategy for the column player is

$$
\boldsymbol{q} = \frac{1}{d}(y_1, y_2, y_3) = \frac{18}{5}(\frac{1}{18}, \frac{2}{9}, 0) = (\frac{1}{5}, \frac{4}{5}, 0).
$$

Exercise 2. Let A be an $m \times n$ matrix. Let

$$
C = conv(\{a_1, \cdots, a_n, e_1, \cdots, e_m\})
$$

be the convex hull of set $\{a_1, \cdots, a_n, e_1, \cdots, e_m\}$, where $\boldsymbol{a}_1^T, \cdots, \boldsymbol{a}_n^T$ are the column vectors of A and e_1, \dots, e_m are the vectors in the standard basis of \mathbb{R}^m . Prove if C contains a point $(c, \dots, c) \in \mathbb{R}^m$ with $c \leq 0$, then the value of $A, v(A) \leq c$.